

Disclosures & Collaborators

- Imaging & Informatics in ROP (i-ROP)
- NIH: R01EY19474, R21EY22387, P30EY10572
- NSF: SCH-1622679
- Research to Prevent Blindness
- Clarity Medical Systems (unpaid member of Scientific Advisory Board)
- Information Technology
- Member, AAO Board of Trustees
- Chair, AAO IRIS Registry Data

- Past Chair, AAO Medication Committee
- Analytics Committee

Example: Retinopathy of Prematurity

- Leading cause of childhood blindness
 - Treatable if early Dx (CRYO-ROP, ETROP, BEAT-ROP)
 - USA: 40,000 cases/year, 600 blind/year
 - Economic impact
- AAP-AAO guidelines (2001): "done with indirect ophthalmoscopy" in NICU
 - Documentation: hand-drawn sketches
- **Challenges** of dogma (practical):
 - Time-intensive: travel, coordination
 - Exam: Difficult, imprecise, subjective
 - More infants at risk (survival)
 - Medicolegal liability
 - Limited access to care & training, especially in rural & underserved areas

Fierson et al, Pediatrics 2001; 108:809-11

Diagnosis: Gold Standards & ICROP

- Originally: descriptive, unstructured
- ICROP (1984):
 - International standard for clinical exams, infrastructure for multicenter clinical trials
 - Parameters: zone (I-III), stage (1-5), extent (clock hours), plus disease
 - Most fields don't have this standardized terminology...
 - CRYO-ROP, ETROP: plus disease is most critical parameter for severe treatment-requiring ROP → "arterial tortuosity & venous dilation" (standard published photo)

Stage 3

Plus disease

ICROP. Arch Ophthalmol 1984; 102:1130-4

Challenge: Diagnostic Accuracy

- 3 (14%) experts: "Plus"
- 18 (86%) experts: "Not Plus"

- 11 (52%) experts: "Plus"
- 10 (48%) experts: "Not Plus"

Chiang et al, Arch Ophthalmol 2007; 125: 875-80.

Science & Art of Medicine

- So what **is** plus disease:
 - Like pornography: "can't define, but know it when I see it"
 - Is "arterial tortuosity & venous dilation" in "central retina" an over-simplification?
 - Could this explain variability?
- Capture & encode detailed qualitative thoughts of 7 experts during plus disease diagnosis:
 - Videotaped while reviewing 7 images: (1) think-aloud protocol, (2) specific questions

Hewing et al, JAMA Ophthalmol 2013; 131:1026-32.

Challenge: Disagreement in Process

... looks like a very low gestational birth baby, it's taken quite a long time to get to this stage. There is a lot of arterial tortuosity, there is a little bit of venous congestion in the superior temporal and superior nasal quadrant, more in the superior half of the retina. By definition I think this has to be plus, because it's two quadrants at least, and even the other quadrants aren't normal...

... I don't know whether the **peripheral disease** is that bad, it may not be actually, could be...

- Expert 2: Diagnosis Pre-Plus Disease
- ... there is a lot of **tortuosity of the arteries**, the **veins are about 2 to**1. This could either be a **pre-plus** eye or a **normal variant**, depending on a quick look at the periphery...
- ... curiously there is a lot of tortuosity down here (inferior), it looks like there is disease up there...
- ... the fact that tortuosity is everywhere, you want to make sure if it's a congenital tortuosity kid.
 - ... I would suspect pre-plus, could also be a normal variant.

- Expert 4: Diagnosis Neither Pre-Plus nor Plus Disease
 ...vessels seem to be branching excessively in that region
 (superonasal) and some increased tortuosity (superotemporal) as well, and
- this **vein looks too fat** (superotemporal)...
 ... if all the quadrants were like this quadrant (superotemporal) then it would be at least pre-plus and verging on plus, but since it's **only one quadrant** that's highly questionable...
- ... would not classify it as plus, I could see why some would call it pre-plus, I would not call it pre-plus, I would not call it pre-plus.

Features Mentioned by Experts

Feature	Number of Mentions
Arterial tortuosity	42/42
Arterial dilation	8/42
Venous tortuosity	10/42
Venous dilation	42/42
Central vessels	8/42
Peripheral vessels	14/42
Number of quadrants of abnormality	23/42
Vascular branching	8/42
Macular features	3/42
Other vascular features	7/42

Hewing et al, JAMA Ophthalmol 2013; 131:1026-32.

Approach: Retinal Image Analysis

- Goal: more accurate diagnosis by quantifying vascular parameters with image analysis
- Accurate segmentation of vessels from images
- Validation against robust reference standard
- Which image features (e.g. tortuosity, branching) are the key ones? How to quantify?
 - Strategy #1: Classic machine learning methods
 - Strategy #2: Convolutional neural networks ("deep learning")

Ryan MC et al, AMIA Proc Annu Symp, 2014; 1902-10 Campbell et al. JAMA Ophthalmol 2016; 134:651-7.

Machine Learning Approach

Classifier	Accuracy (vs. RSD)
Expert 1	64/73 (87%)
Expert 2	63/73 (86%)
Expert 3	58/73 (79%)
Expert 4	72/73 (99%)
Expert 5	64/73 (88%)
Expert 6	62/73 (85%)
Expert 7	68/73 (93%)
Expert 8	64/73 (88%)
Expert Consensus	71/73 (97%)
Computer System	69/73 (95%)

- Manual image segmentation
- Reference standard: combines image reading & ophthalmoscopic diagnosis
- Best performance with 6DD circular crop, acceleration metric
- Variable expert accuracy (79-99%)
- High computer system accuracy (95%)

Ataer-Cansizoglu et al, Trans Vis Sci Technol 2015; 4:5

Deep Learning for ROP

- Used for diabetic retinopathy (JAMA), skin cancer (Nature), AMD
- Train fully-automated CNN for ROP → 6000 posterior pole images, each with reference standard (plus vs. pre-plus vs. normal)
 - AUC 0.98 to identify plus disease
- Independent test set: 91% accuracy (8 experts: mean 82% accuracy, range 77-94%)
- Occlusion analysis: what parts of image did experts use?

Inter-Expert Variability: Spectrum

- Under-callers vs. over-callers (consistent across multiple data sets)
- Continuous spectrum of abnormality: over-simplified by categories
- Experts: good at comparisons, but bad at labeling (drawing lines)

Campbell et al, Ophthalmology 2016;123:2338-44.

Continuous Spectrum of Abnormality

Kalpathy-Cramer et al, Ophthalmology 2016;123:2345-51.

Key Points for FDA: Expert Systems

- Ophthalmic diagnosis is inherently subjective & qualitative: ROP (tortuous?), diabetic retinopathy (NV?)
 - Significant inconsistency, even among experts ("drawing the lines") → performance
 of "real-world" physicians may be worse, unclear impact of "clinical judgment"
 - Potential role for expert systems to improve consistency
 - Bar for systems should be "human-like", not "perfection"
 - Validation: requires transparency, cannot use only a single human
- Rapidly changing field: systems may undergo regular cycles of improvement (e.g. training with new data, better algorithms)
 - Ideal to have efficient mechanism for "upgrades"
- Does intended use of systems matter: advice to physicians ("decision support") vs. closed-loop system (e.g. screening for primary care)
 - Many real-world examples of the former outside FDA purview (e.g. EHRs)
 - I hope FDA will consider different levels of oversight based on use